Table des matières

Chapitre 1. Cas d'exemples avec traitement tertiaire	1
1.1. Utilisations urbaines restreintes, irrigation	
de cultures non vivrières ou transformées	4
1.1.1. Irrigation	4
1.1.2. Réutilisation et recyclage industriels	6
1.1.3. Urbain non potable	6
1.1.4. Stockage	7
1.2. Usine de Nosedo (Milan, Italie): irrigation	7
1.3. Cas de la station de l'Hermitage (île de La Réunion)	11
1.3.1. Charges polluantes	11
1.3.1.1. Charge hydraulique	12
1.3.1.2. Objectifs de traitement	12
1.3.2. Filtration tertiaire	13
1.3.2.1. Choix de la filtration	13
1.3.2.2. Lavage des filtres	14
1.3.3. Désinfection UV	15
1.3.4. Aspect pédagogique	19
1.4. Cas de l'usine de Barcelone (Espagne):	
régénération des zones humides, irrigation	19
1.5. Cas d'Ajman (Émirats arabes unis): irrigation	
et usage urbain non potable	23
1.6. Cas de l'usine de traitement de Wathba (Abu Dhabi) :	
zones récréatives, espaces verts, industries	25
1.7. Cas du lac de Burj Khalifa (Dubaï) : réutilisation	
pour une zone récréative	29

1.7.1. Dimensionnement de la filière de traitement	30
1.7.1.1. Bassin d'agrément (lac)	30
1.7.1.2. Actiflo	31
1.7.1.3. Filtration mécanique	31
1.7.1.4. Désinfection	31
1.7.1.5. Dosages en réactifs	32
1.7.1.6. Qualité d'eau produite	32
1.8. Cas de Darling Quarter (Sydney, Australie) : réutilisation	
d'eau dans un quartier	33
1.9. Bibliographie	37
Chapitre 2. Micropolluants	49
2.1. Introduction	49
2.2. Les pesticides.	50
2.3. Les produits pharmaceutiques et résidus industriels	52
2.4. Technologies d'élimination des pesticides	32
et des micropolluants émergents	60
2.4.1. Oxydants conventionnels : chlore, hypochlorite	00
et dioxyde de chlore	61
2.4.1.1. Ozonation	62
2.4.2. Oxydation chimique avancée	71
2.4.2.1. Couplage ozone/peroxyde d'hydrogène (O ₃ /H ₂ O ₂)	72
2.4.2.2. Couplage UV/ H_2O_2	74
2.4.3. L'adsorption sur charbon actif	76
2.4.3.1. Charbon actif en poudre et charbon actif en micrograins	77
2.4.3.2. Paramètres de dimensionnement	80
2.4.3.3. Cas des pesticides	84
2.4.4. Combinaison ozone/charbon actif	101
2.4.4.1. Ozone/charbon actif en poudre (CAP)	101
2.4.4.2. O ₃ /charbon actif en grains	105
2.5. Bibliographie	107
Chapitre 3. Membranes microfiltration et ultrafiltration	113
3.1. Principe et mécanismes de fonctionnement	115
3.1.1. Membranes sous pression	120
3.1.1.1. Configuration horizontale/verticale	121
3.1.2. Les membranes immergées	124
3.1.3. Mode de filtration : frontal/tangentiel	126

3.2. Paramètres de dimensionnement	127
3.2.1. Choix de la membrane	127
3.2.1.1. Configuration horizontale ou verticale	128
3.2.1.2. Flux de dimensionnement	128
3.2.1.3. Flux instantané et flux net	129
3.2.1.4. Principe du calcul de la surface membranaire	
et des pertes en eaux	130
3.2.1.5. Pertes en eaux	131
3.2.2. Nettoyages en place (NEP)	136
3.2.2.1. Fréquence et conditions des nettoyages en place (NEP)	137
3.3. La microfiltration et l'ultrafiltration appliquées au traitement	
d'eaux usées	137
3.3.1. Turbidité et MES	138
3.3.2. Carbone organique dissous	138
3.3.3. Consommation d'énergie	139
3.4. Filière de traitement secondaire amélioré : les bioréacteurs	
à membranes	140
3.4.1. Fournisseurs de membranes microfiltration utilisées	
en BRM	144
3.4.2. Performances	147
3.4.2.1. Abattement des micro-organismes	147
3.4.2.2. Abattement des virus	147
3.4.2.3. Garanties process	148
3.5. Dispositions des membranes dans la filière de réutilisation	150
3.6. Procédé hybride : couplage procédés chimiques/membranes MF/UF	153
3.7. Conclusion	153
3.8. Bibliographie	154
Chapitre 4. Osmose inverse	161
4.1. Les membranes	162
4.1.1. Matériaux	162
4.2. Principes de fonctionnement et de séparation	164
4.3. Filière de traitement incluant des membranes d'osmose inverse	
en eau usée	166
4.3.1. Paramètres à prendre en compte lors de l'élaboration	
d'une filière de traitement	168
4.3.1.1. Les particules et MES	169
4.3.1.2. Le comptage de particules	169
4.3.1.3. Le SDI ou MFI	169
4.3.1.4. Les sels et métaux	172

	4.3.2. Paramètres de dimensionnement	175
	4.3.2.1. La température	176
	4.3.2.2. Configuration de mise en œuvre	176
	4.3.2.3. Diagramme des flux massiques	179
	4.3.2.4. Facteur de concentration	180
	4.3.2.5. Tubes de pression et nombre de modules par tube	180
	4.3.3. Le post-traitement pour l'approvisionnement en eau potable	182
	4.3.4. Désinfection en aval des membranes	182
	4.4. Place de l'osmose inverse dans la filière de réutilisation	
	des eaux usées	182
	4.5. Performances	187
	4.5.1. Pesticides	189
	4.5.1.1. Relation entre le poids moléculaire des pesticides	
	et le diamètre des pores des membranes	190
	4.5.2. Cas des médicaments	193
	4.5.3. Cas des micro-organismes	196
	4.5.4. Pertes en eau et consommation d'énergie des procédés	
	membranaires pour la réutilisation de l'eau	197
	4.6. Conclusion	198
	4.7. Bibliographie	199
_	hanitro E. Annlications nour cau notable, cau industrialle	
	hapitre 5. Applications pour eau potable, eau industrielle	205
	hapitre 5. Applications pour eau potable, eau industrielle pécifique et recharge de nappes	205
	pécifique et recharge de nappes	205
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211
	5.1. Cas de Windhoek: eau potable, industries spécifiques, recharge de nappes	205 211 211
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 211 216
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 211 216 216
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 211 216 216 216
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 211 216 216 216 220
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 211 216 216 216 220 221
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 211 216 216 216 220
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 211 216 216 216 220 221 222 222
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 216 216 216 220 221 222
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 216 216 216 220 221 222 222 225
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 211 216 216 216 220 221 222 225 225
	5.1. Cas de Windhoek : eau potable, industries spécifiques, recharge de nappes	205 211 216 216 216 220 221 222 222 225

5.3.2. Performances	231
5.3.2.1. Qualité de l'eau brute	231
5.3.2.2. Atelier membrane d'OI	232
5.3.3. Conclusion	233
5.4. Cas d'Illawarra (Australie) : application, protection de l'océan,	
irrigation, industries	234
5.4.1. Les caractéristiques des stations d'épuration	236
5.4.2. Filières de traitement	237
5.4.2.1. Filière haute performance	239
5.4.2.2. Qualité de l'eau exigée pour la réutilisation	242
5.4.3. Conclusion	242
5.5. Cas d'Honolulu : applications en irrigation et industrie	243
5.6. Cas de Gerringong et Gerroa (Australie) : applications	
en irrigation contrôlée et protection des plages	246
5.6.1. Filière de traitement et garanties	247
5.6.2. Atelier de microfiltration	248
5.6.3. Conclusion	249
5.7. Cas d'un parc de jeux et de loisirs (France)	250
5.8. Bibliographie	255
Chapitre 6. Quel avenir pour la réutilisation des eaux usées ?	259
6.1. Défis et perspectives	259
6.2. Et l'eau potable ?	263
6.3. L'eau usée : une vraie alternative ?	263
6.4. Bibliographie	266
Index	269
Sommaire de <i>La réutilisation des eaux u</i> sées 1	273