320 pages - septembre 2020
ISBN papier : 9781789480030
ISBN ebook : 9781789490039

Code ERC :

PE10 Earth System Science
PE10_8 Oceanography (physical, chemical, biological, geological)
LS8 Ecology, Evolution and Environmental Biology
LS8_11 Marine biology and ecology

 
Effacer

*** Nos bureaux étant fermés pendant les fêtes, toutes les commandes de livre au format papier reçues entre le 19 décembre et le 5 janvier ne seront traitées qu’à partir du 6 janvier ***.
Nous vous souhaitons de joyeuses fêtes.

– Papier (Collections classiques, Encyclopédie SCIENCES) :
Livraison offerte pour toute commande directe effectuée sur le site istegroup.com
Délai de livraison : environ deux semaines
Envois uniquement vers : France métropolitaine, Belgique, Suisse et Luxembourg
Impression en couleur
Un ebook de l’ouvrage (à l’exception des titres de l’Encyclopédie SCIENCES) est offert pour tout achat
de sa version papier sur notre site, il vous sera envoyé après la finalisation de votre commande
Offre non applicable aux librairies

– Ebook (Collections classiques, Encyclopédie SCIENCES, Abrégés) :
Prix réservé aux particuliers
Pour les institutions : nous contacter 
Nos ebooks sont au format PDF (compatible sur tout support)

Depuis l’expédition du HMS Challenger (1872-1876), notre vision de l’océan a totalement changé. L’Homme réalise qu’il joue un rôle clé dans la régulation du climat et de la biodiversité et qu’il est également, grâce à ses ressources biologiques et minières, un pourvoyeur de services pour l’humanité.

Océans s’appuie sur les données issues des nouveaux outils océanographiques et satellitaires, acquises lors de programmes internationaux interdisciplinaires. Il décrit les processus qui contrôlent le fonctionnement de l’océan aux différentes échelles spatiales et temporelles.

Après avoir considéré l’évolution des concepts en océanographie physique, chimique et biologique, cet ouvrage profile l’avenir d’un océan plus chaud, acidifié et moins oxygéné. Il montre comment une vision de l’océan à différentes échelles modifie sa compréhension. Enfin, il présente les défis auxquels est confronté l’océan en matière d’exploitation des ressources biologiques et minières dans le cadre d’un développement durable, et de régulation du changement climatique.

 

La presse en parle

Abondamment illustré, il s’adresse à un public averti et aux étudiants, et plus largement à tous ceux qui s’intéressent à l’histoire de l’océanographie et aux sciences de la mer […]

CNRS – 23 septembre 2020
https://www.insu.cnrs.fr/fr/cnrsinfo/oceans-evolution-des-concepts

Radio Laser – 24 octobre 2022
https://www.radiolaser.fr/L-ocean-est-il-le-maitre-du-climat_a33733.html

Unidivers – 6 novembre 2022
https://www.unidivers.fr/ocean-paul-treguer/

1. L’expédition du Challenger : la naissance de l’océanographie
2. De l’océanographie physique aux interactions océan-atmosphère
3. De la chimie à la biogéochimie marine
4. De la biologie marine à l’océanographie biologique
5. Anoxie et chimiosynthèse
6. Un océan plus chaud, acidifié et moins oxygéné
7. L’océan à haute résolution
8. « Défis » pour l’océan

Guy Jacques

Guy Jacques est directeur de recherche émérite au CNRS et océanographe. Vulgarisateur de sciences depuis une vingtaine d’années, il multiplie les ouvrages et les conférences (plus de cent) sur l’océanographie et l’écologie. Il s’intéresse plus généralement au comportement de l’homme à l’égard de la planète.

Paul Tréguer

Paul Tréguer, océanographe biogéochimiste, a dirigé des programmes internationaux et européens sur les impacts du changement global sur l’océan. Il est le fondateur de l’Institut universitaire européen de la mer et de l’Europôle Mer.

Herlé Mercier

Herlé Mercier, océanographe physicien, s’intéresse à l’observation de la variabilité des masses d’eau en Atlantique Nord dans une optique de prévision. Il a présidé le Comité d’évaluation de MISTRALS et le Conseil scientifique de l’IPEV.

Chapitre 1

L’expédition du Challenger : la naissance de l’océanographie (pages : 5-11)

La circumnavigation du Challenger (1872-1876) marque l’« an 1 » de l’océanographie. La moisson de Wyville Thomson et John Murray présentée ici (sondages, hydrologie, mesure des courants, dragages, chalutages, traits de plancton) est impressionnante : elle prouve l’existence d’une vie en profondeur, met en évidence des fosses et dorsales océaniques, la constance des proportions relatives des différents sels, l’origine pélagique des sédiments.


Chapitre 2

De l’océanographie physique aux interactions océan-atmosphère (pages : 13-47)

L’observation des propriétés physiques de l’océan a été révolutionnée ces dernières décennies par la mise en œuvre de techniques innovantes de mesure tant in situ que depuis l’espace. Cette étude illustre l’évolution des méthodes d’observations de l’océan depuis l’expédition du Challenger jusqu’à nos jours et montre comment ces observations ont été la base d’avancées majeures de notre connaissance des océans.


Chapitre 3

De la chimie à la biogéochimie marine (pages : 49-90)

Depuis le XIXe siècle, l’océanographie chimique a progressivement évolué en biogéochimie marine, pour l’étude des upwellings côtiers, de l’océan Austral et du cycle du carbone de l’océan mondial. Ce texte offre les bases pour comprendre les concepts de Redfield, de production nouvelle, de production régénérée (Eppley et Peterson), de tapis roulant (Broecker), et le développement de programmes internationaux (JGOFS, etc.).


Chapitre 4

De la biologie marine à l’océanographie biologique (pages : 91-128)

Les stations marines naissent à la fin du XIXe siècle mais l’océanographie émerge seulement dans les années 1960 avec une évolution rapide des techniques en milieu pélagique (pigments par chromatographie, cytométrie en flux, observation spatiale, détection optique du zooplancton). Le plancton est ici étudié pour son rôle dans le cycle du carbone et le picoplancton constitue un centre d’intérêt pour la génomique.


Chapitre 5

Anoxie et chimiosynthèse (pages : 129-165)

Dans l’océan, des zones pauvres (hypoxie) ou dépourvues (anoxie) en dioxygène prennent naissance sous les aires naturellement très productives (résurgences côtières) ou eutrophisées (mer Baltique). Dans ces eaux, ainsi que dans les systèmes hydrothermaux, la création de matière est due à la chimiosynthèse. Cette étude fait le point sur la découverte et l’importance des sources hydrothermales à l’échelle mondiale.


Chapitre 6

Un océan plus chaud, acidifié et moins oxygéné (pages : 167-195)

Du fait du changement climatique en cours, l’océan devient plus chaud, plus acidifié, et moins oxygéné. Ce texte décrit les impacts sur la chimie des carbonates et sur les coraux, sur la pompe biologique de carbone, sur la production phytoplanctonique (concept de Margalef), sur l’élévation du niveau marin et sur les services écosystémiques.


Chapitre 7

L’océan à haute résolution (pages : 197-220)

Grâce aux nouveaux outils (satellites, profileurs, planeurs, etc.), l’océanographie est désormais capable de décrire l’océan à (sous-)méso-échelle. Cette étude donne quelques éléments pour comprendre la physique à haute résolution et décrit l’impact des structures à (sous-)méso-échelle sur les différents niveaux trophiques. Elle présente également l’intérêt d’intégrer la dynamique à fine échelle dans les modèles de circulation générale.


Chapitre 8

« Défis » pour l’océan (pages : 221-249)

Au XXIe siècle, l’océan est confronté à trois défis qu’analyse ce texte. La surpêche : serons-nous capables de garantir le renouvellement des ressources biologiques par une approche écosystémique des pêches ? L’exploitation des ressources minières en mer profonde, qui est désormais possible : est-elle envisageable dans le respect de la biodiversité des zones abyssales ? Et enfin, faut-il manipuler l’océan pour ralentir le changement climatique ?