104 pages - février 2023
ISBN papier : non disponible
ISBN ebook : 9781915874047

Cet ouvrage est uniquement disponible en version électronique.


Effacer

*** Nos bureaux étant fermés pendant les fêtes, toutes les commandes de livre au format papier reçues entre le 19 décembre et le 5 janvier ne seront traitées qu’à partir du 6 janvier ***.
Nous vous souhaitons de joyeuses fêtes.

– Papier (Collections classiques, Encyclopédie SCIENCES) :
Livraison offerte pour toute commande directe effectuée sur le site istegroup.com
Délai de livraison : environ deux semaines
Envois uniquement vers : France métropolitaine, Belgique, Suisse et Luxembourg
Impression en couleur
Un ebook de l’ouvrage (à l’exception des titres de l’Encyclopédie SCIENCES) est offert pour tout achat
de sa version papier sur notre site, il vous sera envoyé après la finalisation de votre commande
Offre non applicable aux librairies

– Ebook (Collections classiques, Encyclopédie SCIENCES, Abrégés) :
Prix réservé aux particuliers
Pour les institutions : nous contacter 
Nos ebooks sont au format PDF (compatible sur tout support)

This book proposes a transverse mathematical perspective of deep machine learning in artificial intelligence, and to do so, it develops a framework of generalized transformations, called multiserial and hyperserial decompositions, in order to unify standard and recent data representation spaces. The generalization consists of integrating expressions of several variants of convolutional neural networks and wavelet filter banks in the same analytical framework.

The integrated expressions are derived recursively, from downstream to upstream layers, to show the sequence of features returned at the nodes of a network model architecture. The inspiring framework for the derivation of these expressions is that of M-band convolution filter banks. Inter-layer inter-node expressions are provided, and activation sequences of convolutional neural networks are mathematically described by suitable algebraic path representations.

The topics covered address mathematical optimization, generalized functions and functional analysis, focusing on convolution integrals, probability entropy, statistical models and convolutional neural compositions.

1. The Minimum You Need to Know About Optimization
2. The Essentials to Know in Functional Analysis
3. Probability Entropy and Neural Statistical Parameterizations
4. Convolutional Neural Networks

Abdourrahmane M. Atto

Abdourrahmane M. Atto est professeur à l’Université Savoie Mont Blanc.