452 pages - November 2024
ISBN papier : 9781789481648
ISBN ebook : 9781789491647

Code ERC :

PE1 Mathematics
PE1_20 Application of mathematics in sciences
PE1_21 Application of mathematics in industry and society

Clear

– Paperback:
Free delivery for any order placed directly through the ISTE Group website istegroup.com
Delivery time: approximately two weeks
Deliveries only within metropolitan France, Belgium, Switzerland and Luxembourg
Printed in color
An ebook version is provided free with every hardcopy ordered through our website
It will be sent after the order is completed
Offer not applicable to bookshops

– Ebook:
Prices reserved for private individuals
Licenses for institutions: contact us
Our ebooks are in PDF format (readable on any device)

Les méthodes mathématiques en ingénierie se caractérisent par une vaste gamme de techniques permettant d’aborder un large spectre de problèmes divers et variés. De plus, des techniques d’analyse entièrement différentes peuvent être appliquées au même problème, ce qui se justifie par la différence des applications spécifiques.

Par conséquent, l’étude des analyses et des solutions de problèmes spécifiques conduit le chercheur à générer ses propres techniques et approches pour l’analyse de problèmes similaires qui surgissent continuellement dans le processus de développement technique.

Méthodes de calcul et modélisation mathématique en cyberphysique et applications techniques 1 propose des solutions à des problèmes dans les domaines actuels de l’ingénierie informatique et de la cyberphysique, offrant des exemples d’idées, de solutions et d’approches concrètes face à des tâches et des obstacles pratiques.

1. Les équations de type hydrodynamique et les solutions solitaires
2. Les solutions asymptotiques pour l’équation de Korteweg-de Vries avec des coefficients variables et une perturbation singulière
3. Analyse asymptotique de l’équation vcKdV avec singularité faible
4. Modélisation de la dynamique des fluides hétérogènes avec transitions de phase et milieux poreux
5. Modèles mathématiques et contrôle des processus technologiques fonctionnellement stables
6. Méthode multibloc à direction alternative avec accélération de Nesterov et ses applications
7. Algorithmes d’extragradient modifiés pour les inégalités variationnelles
8. Algorithmes multivariés de signatures numériques en mode sécurisé de type El Gamal
9. Modèle de métasurface de la formation géographique du champ barique
10. Simulation de l’état du plasma d’électrons et de trous par des méthodes de théorie des perturbations
11. Diffusion dans les modèles de dynamique des maladies infectieuses
12. Ondes solitaires dans les « eaux peu profondes »
13. Élément d’instrumentation et intergiciel de grille dans les problèmes de métrologie
14. L’évolution différentielle pour la meilleure approximation uniforme des splines
15. Trouver la paire de points la plus proche entre deux courbes lisses dans l’espace euclidien
16. Processus de Markov décisionnels avec contraintes pour l’industrie

Dmitri Koroliouk

Dmitri Koroliouk est professeur à l’Université Igor Sikorsky Kyiv Polytechnic Institute (Ukraine) et chercheur principal à l’Académie nationale des sciences d’Ukraine.

Sergiy Lyashko

Sergiy Lyashko est chef du département de mathématiques computationnelles de la faculté d’informatique et de cybernétique de l’Université nationale Taras Shevchenko de Kiev et professeur à l’Académie nationale des sciences d’Ukraine.

Nikolaos Limnios

Nikolaos Limnios est professeur au laboratoire de mathématiques appliquées de l’Université de Technologie de Compiègne. Ses intérêts de recherche concernent les processus stochastiques et leur inférence statistique et les evolutions aléatoires semi-markoviens.