– Paperback:
Free delivery for any order placed directly through the ISTE Group website istegroup.com
Delivery time: approximately two weeks
Deliveries only within metropolitan France, Belgium, Switzerland and Luxembourg
Printed in color
An ebook version is provided free with every hardcopy ordered through our website
It will be sent after the order is completed
Offer not applicable to bookshops
– Ebook:
Prices reserved for private individuals
Licenses for institutions: contact us
Our ebooks are in PDF format (readable on any device)
- Description
- Table of Contents
- About the author(s)
Les métaheuristiques sont utilisées pour résoudre des problèmes d’optimisation complexes, à chaque fois que l’on veut identifier, avec un temps de calcul raisonnable, des solutions efficaces. Il s’agit donc d’une approche pragmatique, qui a des sources d’inspiration multiples.
La série Les métaheuristiques a pour objectif d’étendre leur champ d’application, en proposant des approches transversales du domaine, des études centrées sur des applications spécifiques ou encore des analyses consacrées à des familles de métaheuristiques particulières.
Les métaheuristiques d’optimisation procèdent à un « tirage au hasard » pour effectuer certains choix ou appliquer certaines règles, pour cela elles doivent faire appel à un ou plusieurs générateurs de nombres aléatoires (GNA).
De nombreux types de GNA existent, de l’aléatoire vrai jusqu’au codé simple. Ils peuvent être manipulés pour produire des distributions spécifiques.
Les performances d’un algorithme dépendent du GNA utilisé. Cet ouvrage s’intéresse à la comparaison d’optimiseurs, il définit une approche effort-résultat d’où peuvent être dérivés tous les critères classiques (médiane, moyenne, etc.) et d’autres plus sophistiqués.
Les codes-sources utilisés pour les exemples sont aussi présentés, ainsi qu’une réflexion sur le « hasard superflu », expliquant succinctement pourquoi et comment l’aspect stochastique de l’optimisation pourrait être évité dans certains cas.
Partie 1. Le hasard en optimisation
1. Le risque nécessaire
2. Générateurs de nombres aléatoires (GNA)
3. Les effets du hasard
Partie 2. Comparaisons d’optimiseurs
4. Algorithmes et optimiseurs
5. Critères de performance
6. Comparer des optimiseurs
Partie 3. Annexes
7. Le hasard superflu ? Optimiseurs à liste
8. Biais et signatures
9. Un pseudo-article scientifique
10. Petit bêtisier
11. Compléments mathématiques
12. Problèmes
13. Codes sources
Maurice Clerc
Maurice Clerc est consultant spécialiste mondial de l’optimisation par essaims particulaires. Ses activités lui permettent d’enrichir et d’approfondir son expérience de la résolution de problèmes d’optimisation.
- Vente par chapitre