– Paperback:
Free delivery for any order placed directly through the ISTE Group website istegroup.com
Delivery time: approximately two weeks
Deliveries only within metropolitan France, Belgium, Switzerland and Luxembourg
Printed in color
An ebook version is provided free with every hardcopy ordered through our website
It will be sent after the order is completed
Offer not applicable to bookshops
– Ebook:
Prices reserved for private individuals
Licenses for institutions: contact us
Our ebooks are in PDF format (readable on any device)
Cet ouvrage analyse la transition des espaces euclidiens de dimension finie aux espaces de Hilbert de dimension infinie, notion parfois difficile à appréhender pour les non-spécialistes. L’accent est mis sur les analogies et les différences entre les propriétés de la dimension finie et celles de la dimension infinie, en remarquant l’importance fondamentale de la cohérence entre la structure algébrique et celle topologique qui permet aux espaces de Hilbert d’être les structures de dimension infinie les plus proches des espaces euclidiens.
Le fil rouge de cet ouvrage est la transformée de Fourier. Un accent particulier est mis sur la transformée de Fourier discrète (DFT), qui permet de montrer des applications explicites au traitement des signaux et des images numériques. La structure géométrique des espaces de Hilbert et les plus importantes propriétés des opérateurs linéaires bornés sur ces espaces sont également traités. Les théorèmes sont présentés avec des preuves détaillées et des exercices avec solution permettent de voir des applications immédiates des résultats théoriques.
(FR) 1. Les espaces vectoriels avec produit scalaire (ou pré-hilbertiens)
2. La transformée de Fourier discrète et ses applications à la théorie des signaux et des images
3. Rappel sur la théorie de la mesure et de l’intégration à la Lebesgue
4. Espaces de Banach et de Hilbert
5. La structure géométrique des espaces de Hilbert
6. Les opérateurs linéaires bornés dans les espaces de Hilbert